Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We investigate isomorphic embeddings T: C(K) → C(L) between Banach spaces of continuous functions. We show that if such an embedding T is a positive operator then K is the image of L under an upper semicontinuous set-function having finite values. Moreover we show that K has a π-base of sets whose closures are continuous images of compact subspaces of L. Our results imply in particular that if C(K) can be positively embedded into C(L) then some topological properties of L, such as countable tightness or Fréchetness, are inherited by K.
We show that some isomorphic embeddings C(K) → C(L) can be, in a sense, reduced to positive embeddings.
We show that some isomorphic embeddings C(K) → C(L) can be, in a sense, reduced to positive embeddings.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
179-192
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
- Instytut Matematyczny, Uniwersytet Wrocławski, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm216-2-5