Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
In 1971, Grauert and Remmert proved that a commutative, complex, Noetherian Banach algebra is necessarily finite-dimensional. More precisely, they proved that a commutative, complex Banach algebra has finite dimension over ℂ whenever all the closed ideals in the algebra are (algebraically) finitely generated. In 1974, Sinclair and Tullo obtained a non-commutative version of this result. In 1978, Ferreira and Tomassini improved the result of Grauert and Remmert by showing that the statement is also true if one replaces 'closed ideals' by 'maximal ideals in the Shilov boundary of A'. We give a shorter proof of this latter result, together with some extensions and related examples.
We study the following conjecture. Suppose that all maximal left ideals in a unital Banach algebra A are finitely generated. Then A is finite-dimensional.
We study the following conjecture. Suppose that all maximal left ideals in a unital Banach algebra A are finitely generated. Then A is finite-dimensional.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
173-193
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Department of Mathematics and Statistics, Fylde College, University of Lancaster, Lancaster LA1 4YF, United Kingdom
autor
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, P.O. Box 21, 00-956 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-2-5