Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We consider singular integral operators on ℝ given by convolution with a principal value distribution defined by integrating against oscillating kernels of the form $e^{iR(x)}/x$ where R(x) = P(x)/Q(x) is a general rational function with real coefficients. We establish weak-type (1,1) bounds for such operators which are uniform in the coefficients, depending only on the degrees of P and Q. It is not always the case that these operators map the Hardy space H¹(ℝ) to L¹(ℝ) and we will characterise those rational phases R(x) = P(x)/Q(x) which do map H¹ to L¹ (and even H¹ to H¹).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
57-76
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., 04510, México
autor
- Maxwell Institute of Mathematical Sciences and the School of Mathematics, University of Edinburgh, JCMB, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm210-1-4