Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We prove a Chevet type inequality which gives an upper bound for the norm of an isotropic log-concave unconditional random matrix in terms of the expectation of the supremum of "symmetric exponential" processes, compared to the Gaussian ones in the Chevet inequality. This is used to give a sharp upper estimate for a quantity $Γ_{k,m}$ that controls uniformly the Euclidean operator norm of the submatrices with k rows and m columns of an isotropic log-concave unconditional random matrix. We apply these estimates to give a sharp bound for the restricted isometry constant of a random matrix with independent log-concave unconditional rows. We also show that our Chevet type inequality does not extend to general isotropic log-concave random matrices.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
35-56
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
autor
- Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warszawa, Poland
autor
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2G1
autor
- Équipe d'Analyse et Mathématiques Appliquées, Université Paris-Est, 5, boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallée, Cedex 2, France
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2G1
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm210-1-3