Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For a linear operator T in a Banach space let $σ_{p}(T)$ denote the point spectrum of T, let $σ_{p,n}(T)$ for finite n > 0 be the set of all $λ ∈ σ_{p}(T)$ such that dim ker(T - λ) = n and let $σ_{p,∞}(T)$ be the set of all $λ ∈ σ_{p}(T)$ for which ker(T - λ) is infinite-dimensional. It is shown that $σ_{p}(T)$ is $ℱ_{σ}$, $σ_{p,∞}(T)$ is $ℱ_{σδ}$ and for each finite n the set $σ_{p,n}(T)$ is the intersection of an $ℱ_{σ}$ set and a $𝒢_{δ}$ set provided T is closable and the domain of T is separable and weakly σ-compact. For closed densely defined operators in a separable Hilbert space 𝓗 a more detailed decomposition of the spectra is obtained and the algebra of all bounded linear operators on 𝓗 is decomposed into Borel parts. In particular, it is shown that the set of all closed range operators on 𝓗 is Borel.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
77-85
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Instytut Matematyki, Wydział Matematyki i Informatyki, Uniwersytet Jagielloński, Łojasiewicza 6, 30-348 Kraków, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-1-5