Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Given a von Neumann algebra M we consider its central extension E(M). For type I von Neumann algebras, E(M) coincides with the algebra LS(M) of all locally measurable operators affiliated with M. In this case we show that an arbitrary automorphism T of E(M) can be decomposed as $T = T_{a} ∘ T_{ϕ}$, where $T_{a}(x) = axa^{-1}$ is an inner automorphism implemented by an element a ∈ E(M), and $T_{ϕ}$ is a special automorphism generated by an automorphism ϕ of the center of E(M). In particular if M is of type $I_{∞}$ then every band preserving automorphism of E(M) is inner.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
1-17
Opis fizyczny
Daty
wydano
2011
Twórcy
autor
- Institut für Angewandte Mathematik and HCM, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
autor
- Institute of Mathematics and Information Technologies, Uzbekistan Academy of Sciences, 100125 Tashkent, Uzbekistan
- Abdus Salam International Centre, for Theoretical Physics (ICTP), Trieste, Italy
- Karakalpak State University, 230113 Nukus, Uzbekistan
autor
- Karakalpak State University, 230113 Nukus, Uzbekistan
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-1-1