Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let Ω be an open subset of $ℝ^{d}$ with 0 ∈ Ω. Furthermore, let $H_{Ω} = -∑^{d}_{i,j=1} ∂_{i}c_{ij}∂_{j}$ be a second-order partial differential operator with domain $C_{c}^{∞}(Ω)$ where the coefficients $c_{ij} ∈ W^{1,∞}_{loc}(Ω̅)$ are real, $c_{ij} = c_{ji}$ and the coefficient matrix $C = (c_{ij})$ satisfies bounds 0 < C(x) ≤ c(|x|)I for all x ∈ Ω. If
$∫_{0}^{∞} ds s^{d/2}e^{-λμ(s)²} < ∞$
for some λ > 0 where $μ(s) = ∫_{0}^{s} dt c(t)^{-1/2}$ then we establish that $H_{Ω}$ is L₁-unique, i.e. it has a unique L₁-extension which generates a continuous semigroup, if and only if it is Markov unique, i.e. it has a unique L₂-extension which generates a submarkovian semigroup. Moreover these uniqueness conditions are equivalent to the capacity of the boundary of Ω, measured with respect to $H_{Ω}$, being zero. We also demonstrate that the capacity depends on two gross features, the Hausdorff dimension of subsets A of the boundary of the set and the order of degeneracy of $H_{Ω}$ at A.
$∫_{0}^{∞} ds s^{d/2}e^{-λμ(s)²} < ∞$
for some λ > 0 where $μ(s) = ∫_{0}^{s} dt c(t)^{-1/2}$ then we establish that $H_{Ω}$ is L₁-unique, i.e. it has a unique L₁-extension which generates a continuous semigroup, if and only if it is Markov unique, i.e. it has a unique L₂-extension which generates a submarkovian semigroup. Moreover these uniqueness conditions are equivalent to the capacity of the boundary of Ω, measured with respect to $H_{Ω}$, being zero. We also demonstrate that the capacity depends on two gross features, the Hausdorff dimension of subsets A of the boundary of the set and the order of degeneracy of $H_{Ω}$ at A.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
79-103
Opis fizyczny
Daty
wydano
2011
Twórcy
autor
- Centre for Mathematics and its Applications, Australian National University, Canberra, ACT 0200, Australia
autor
- Department of Mathematics, Macquarie University, Sydney, NSW 2109, Australia
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-1-5