Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We define homogeneous classes of x-dependent anisotropic symbols $Ṡ^{m}_{γ,δ}(A)$ in the framework determined by an expansive dilation A, thus extending the existing theory for diagonal dilations. We revisit anisotropic analogues of Hörmander-Mikhlin multipliers introduced by Rivière [Ark. Mat. 9 (1971)] and provide direct proofs of their boundedness on Lebesgue and Hardy spaces by making use of the well-established Calderón-Zygmund theory on spaces of homogeneous type. We then show that x-dependent symbols in $Ṡ⁰_{1,1}(A)$ yield Calderón-Zygmund kernels, yet their L² boundedness fails. Finally, we prove boundedness results for the class $Ṡ^m_{1,1}(A)$ on weighted anisotropic Besov and Triebel-Lizorkin spaces extending isotropic results of Grafakos and Torres [Michigan Math. J. 46 (1999)].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
41-66
Opis fizyczny
Daty
wydano
2010
Twórcy
autor
- Department of Mathematics, Western Washington University, 516 High Street, Bellingham, WA 98225-9063, U.S.A.
autor
- Department of Mathematics, University of Oregon, Eugene, OR 97403-1222, U.S.A.
- Institute of Mathematics, Polish Academy of Sciences, Abrahama 18, 81-825 Sopot, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-1-3