Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let 0 < p ≤ 1, let ω: ℤ → [1,∞) be a weight on ℤ and let f be a nowhere vanishing continuous function on the unit circle Γ whose Fourier series satisfies $∑_{n∈ℤ} |f̂(n)|^{p}ω(n) < ∞$. Then there exists a weight ν on ℤ such that $∑_{n∈ℤ} |\widehat{(1/f)}(n)|^{p} ν(n) < ∞$. Further, ν is non-constant if and only if ω is non-constant; and ν = ω if ω is non-quasianalytic. This includes the classical Wiener theorem (p = 1, ω = 1), Domar theorem (p = 1, ω is non-quasianalytic), Żelazko theorem (ω = 1) and a recent result of Bhatt and Dedania (p = 1). An analogue of the Lévy theorem at the present level of generality is also developed. Given a locally compact group G with a continuous weight ω and 0 < p < 1, the locally bounded space $L^{p}(G,ω)$ is closed under convolution if and only if G is discrete if and only if G admits an atom. This generalizes and refines another result of Żelazko.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
219-225
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat, India
autor
- Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat, India
autor
- Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat, India
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm195-3-2