Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
If G is the closure of $L_{∞}$ in exp L₂, it is proved that the inclusion between rearrangement invariant spaces E ⊂ F is strictly singular if and only if it is disjointly strictly singular and E ⊊ G. For any Marcinkiewicz space M(φ) ⊂ G such that M(φ) is not an interpolation space between $L_{∞}$ and G it is proved that there exists another Marcinkiewicz space M(ψ) ⊊ M(φ) with the property that the M(ψ) and M(φ) norms are equivalent on the Rademacher subspace. Applications are given and a question of Milman answered.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
269-283
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- Department of Mathematics, Samara State University, Samara 443029, Russia
autor
- Department of Mathematical Analysis, Madrid Complutense University, 28040 Madrid, Spain
autor
- Department of Mathematics, Voronezh State University, Voronezh 394006, Russia
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm193-3-4