Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
A linear map T from a Banach algebra A into another B preserves zero products if T(a)T(b) = 0 whenever a,b ∈ A are such that ab = 0. This paper is mainly concerned with the question of whether every continuous linear surjective map T: A → B that preserves zero products is a weighted homomorphism. We show that this is indeed the case for a large class of Banach algebras which includes group algebras. Our method involves continuous bilinear maps ϕ: A × A → X (for some Banach space X) with the property that ϕ(a,b) = 0 whenever a,b ∈ A are such that ab = 0. We prove that such a map necessarily satisfies ϕ(aμ,b) = ϕ(a,μ b) for all a,b ∈ A and for all μ from the closure with respect to the strong operator topology of the subalgebra of ℳ(A) (the multiplier algebra of A) generated by doubly power-bounded elements of ℳ(A). This method is also shown to be useful for characterizing derivations through the zero products.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
131-159
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
autor
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
autor
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
autor
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm193-2-3