Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We prove that the absolutely continuous part of the periodic Jacobi operator does not change (modulo unitary equivalence) under additive perturbations by compact Jacobi operators with weights and diagonals defined in terms of the Stolz classes of slowly oscillating sequences. This result substantially generalizes many previous results, e.g., the one which can be obtained directly by the abstract trace class perturbation theorem of Kato-Rosenblum. It also generalizes several results concerning perturbations of the discrete (free or periodic) Schrödinger operator. The paper concerns "one-sided" Jacobi operators (i.e. in l²(ℕ)) and is based on the method of subordinacy. We provide some spectral results for the unperturbed, periodic case, and also an appendix containing some subordination theory tools.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
259-279
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- Wydział Matematyki, Informatyki i Mechaniki, Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm192-3-4