Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let (M,g) be a compact Riemannian manifold without boundary, with dim M ≥ 3, and f: ℝ → ℝ a continuous function which is sublinear at infinity. By various variational approaches, existence of multiple solutions of the eigenvalue problem
$-Δ_{g}ω + α(σ)ω = K̃(λ,σ)f(ω)$, σ ∈ M, ω ∈ H₁²(M),
is established for certain eigenvalues λ > 0, depending on further properties of f and on explicit forms of the function K̃. Here, $Δ_{g}$ stands for the Laplace-Beltrami operator on (M,g), and α, K̃ are smooth positive functions. These multiplicity results are then applied to solve Emden-Fowler equations which involve sublinear terms at infinity.
$-Δ_{g}ω + α(σ)ω = K̃(λ,σ)f(ω)$, σ ∈ M, ω ∈ H₁²(M),
is established for certain eigenvalues λ > 0, depending on further properties of f and on explicit forms of the function K̃. Here, $Δ_{g}$ stands for the Laplace-Beltrami operator on (M,g), and α, K̃ are smooth positive functions. These multiplicity results are then applied to solve Emden-Fowler equations which involve sublinear terms at infinity.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
237-246
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- Department of Economics, University of Babeş-Bolyai, 400591 Cluj-Napoca, Romania
autor
- Institute of Mathematics "Simion Stoilow", of the Romanian Academy, 014700 Bucureşti, Romania
- Department of Mathematics, University of Craiova, 200585 Craiova, Romania
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm191-3-5