Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let 𝒯 be the Itô Hopf algebra over an associative algebra 𝓛 into which the universal enveloping algebra 𝓤 of the commutator Lie algebra 𝓛 is embedded as the subalgebra of symmetric tensors. We show that there is a one-to-one correspondence between deformations Δ[h] of the coproduct in 𝒯 and pairs (d⃗[h],d⃖[h]) of right and left differential maps which are deformations of the differential maps for 𝒯 [Hudson and Pulmannová, J. Math. Phys. 45 (2004)]. Corresponding to the multiplicativity and coassociativity of Δ[h], d⃗[h] and d⃖[h] satisfy the Leibniz-Itô formula and a mutual commutativity condition. Δ[h] is recovered from d⃗[h] and d⃖[h] by a generalised Taylor expansion. As an illustrative example we consider the differential maps corresponding to the quantisation of quasitriangular commutator Lie bialgebras of [Hudson and Pulmannová, Lett. Math. Phys. 72 (2005)].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
1-16
Opis fizyczny
Daty
wydano
2008
Twórcy
autor
- Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, Great Britain
autor
- Mathematical Institute, Slovak Academy of Sciences, Stefankova 49, 81473 Bratislava, Slovakia
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm188-1-1