Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
σ-Asplund generated Banach spaces are used to give new characterizations of subspaces of weakly compactly generated spaces and to prove some results on Radon-Nikodým compacta. We show, typically, that in the framework of weakly Lindelöf determined Banach spaces, subspaces of weakly compactly generated spaces are the same as σ-Asplund generated spaces. For this purpose, we study relationships between quantitative versions of Asplund property, dentability, differentiability, and of weak compactness in Banach spaces. As a consequence, we provide a functional-analytic proof of a result of Arvanitakis: A compact space is Eberlein if (and only if) it is simultaneously Corson and quasi-Radon-Nikodým.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
125-152
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Mathematical Institute, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic
autor
- Departamento de Matemática Aplicada, ETSI Telecomunicación, Universidad Politécnica de Valencia, C/Vera, s/n, 46071 Valencia, Spain
autor
- Mathematical Institute, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm181-2-2