Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We generalize, to the setting of Arveson's maximal subdiagonal subalgebras of finite von Neumann algebras, the Szegő $L^{p}$-distance estimate and classical theorems of F. and M. Riesz, Gleason and Whitney, and Kolmogorov. As a byproduct, this completes the noncommutative analog of the famous cycle of theorems characterizing the function algebraic generalizations of $H^{∞}$ from the 1960's. A sample of our other results: we prove a Kaplansky density result for a large class of these algebras, and give a necessary condition for every completely contractive homomorphism on a unital subalgebra of a C*-algebra to have a unique completely positive extension.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
177-195
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Department of Mathematics, University of Houston, Houston, TX 77204-3008, U.S.A.
autor
- Department of Mathematical Sciences, P.O. Box 392, 0003 Unisa, South Africa
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-2-4