Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We study when the Daugavet equation is satisfied for weakly compact polynomials on a Banach space X, i.e. when the equality
||Id + P|| = 1 + ||P||
is satisfied for all weakly compact polynomials P: X → X. We show that this is the case when X = C(K), the real or complex space of continuous functions on a compact space K without isolated points. We also study the alternative Daugavet equation
$max_{|ω|=1} ||Id + ωP|| = 1 + ||P||$
for polynomials P: X → X. We show that this equation holds for every polynomial on the complex space X = C(K) (K arbitrary) with values in X. This result is not true in the real case. Finally, we study the Daugavet and the alternative Daugavet equations for k-homogeneous polynomials.
||Id + P|| = 1 + ||P||
is satisfied for all weakly compact polynomials P: X → X. We show that this is the case when X = C(K), the real or complex space of continuous functions on a compact space K without isolated points. We also study the alternative Daugavet equation
$max_{|ω|=1} ||Id + ωP|| = 1 + ||P||$
for polynomials P: X → X. We show that this equation holds for every polynomial on the complex space X = C(K) (K arbitrary) with values in X. This result is not true in the real case. Finally, we study the Daugavet and the alternative Daugavet equations for k-homogeneous polynomials.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
63-84
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Department of Mathematics, POSTECH, Pohang 790-784, Korea
autor
- Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain
autor
- Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain
autor
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm178-1-4