Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let M ∈ Mₙ(ℤ) be expanding such that |det(M)| = p is a prime and pℤⁿ ⊈ M²(ℤⁿ). Let D ⊂ ℤⁿ be a finite set with |D| = |det(M)|. Suppose the attractor T(M,D) of the iterated function system ${ϕ_{d}(x) = M^{-1}(x+d)}_{d∈ D}$ has positive Lebesgue measure. We prove that (i) if D ⊈ M(ℤⁿ), then D is a complete set of coset representatives of ℤⁿ/M(ℤⁿ); (ii) if D ⊆ M(ℤⁿ), then there exists a positive integer γ such that $D = M^{γ}D₀$, where D₀ is a complete set of coset representatives of ℤⁿ/M(ℤⁿ). This improves the corresponding results of Kenyon, Lagarias and Wang. We then give several remarks and examples to illustrate some problems on digit sets.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
183-194
Opis fizyczny
Daty
wydano
2006
Twórcy
autor
- College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, P.R. China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm177-2-7