Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
For an injective map τ acting on the dyadic subintervals of the unit interval [0,1) we define the rearrangement operator $T_{s}$, 0 < s < 2, to be the linear extension of the map
$(h_{I})/(|I|^{1/s}) ↦ (h_{τ(I)})(|τ(I)|^{1/s})$,
where $h_{I}$ denotes the $L^{∞}$-normalized Haar function supported on the dyadic interval I. We prove the following extrapolation result: If there exists at least one 0 < s₀ < 2 such that $T_{s₀}$ is bounded on $H^{s₀}$, then for all 0 < s < 2 the operator $T_{s}$ is bounded on $H^{s}$.
$(h_{I})/(|I|^{1/s}) ↦ (h_{τ(I)})(|τ(I)|^{1/s})$,
where $h_{I}$ denotes the $L^{∞}$-normalized Haar function supported on the dyadic interval I. We prove the following extrapolation result: If there exists at least one 0 < s₀ < 2 such that $T_{s₀}$ is bounded on $H^{s₀}$, then for all 0 < s < 2 the operator $T_{s}$ is bounded on $H^{s}$.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
196-205
Opis fizyczny
Daty
wydano
2005
Twórcy
autor
- Department of Mathematics and Statistics, P.O. Box 35 (MaD), FIN-40014 University of Jyväskylä, Finland
autor
- Department of Analysis, J. Kepler University, A-4040 Linz, Austria
autor
- Department of Analysis, J. Kepler University, A-4040 Linz, Austria
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm171-2-5