Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
To each set of knots $t_{i} = i/2n$ for i = 0,...,2ν and $t_{i} = (i-ν)/n$ for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space $𝓢_{ν,n}$ of all piecewise linear and continuous functions on I = [0,1] with knots $t_{i}$ and the orthogonal projection $P_{ν,n}$ of L²(I) onto $𝓢_{ν,n}$. The main result is
$lim_{(n-ν)∧ ν → ∞} ||P_{ν,n}||₁ = sup_{ν,n : 1 ≤ ν ≤ n} ||P_{ν,n}||₁ = 2 + (2 - √3)²$.
This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².
$lim_{(n-ν)∧ ν → ∞} ||P_{ν,n}||₁ = sup_{ν,n : 1 ≤ ν ≤ n} ||P_{ν,n}||₁ = 2 + (2 - √3)²$.
This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
55-73
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
- Institute of Mathematics, Polish Academy of Sciences, Abrahama 18, 81-825 Sopot, Poland
autor
- Institute of Mathematics, Polish Academy of Sciences, Abrahama 18, 81-825 Sopot, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm164-1-4