Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
It is known that every operator on a (separable) Hilbert space is the direct integral of irreducible operators, but not every one is the direct sum of irreducible ones. We show that an operator can have either finitely or uncountably many reducing subspaces, and the former holds if and only if the operator is the direct sum of finitely many irreducible operators no two of which are unitarily equivalent. We also characterize operators T which are direct sums of irreducible operators in terms of the C*-structure of the commutant of the von Neumann algebra generated by T.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
37-49
Opis fizyczny
Daty
wydano
2003
Twórcy
autor
- Department of Mathematics, Hebei University of Technology, Tianjin 300130, China
autor
- Department of Mathematics, Hebei Nomal University, Shijiazhuang 050016, China
autor
- Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-1-3