Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We study the weak type (1,1) and the $L^{p}$-boundedness, 1 < p ≤ 2, of the so-called vertical (i.e. involving space derivatives) Littlewood-Paley-Stein functions 𝒢 and ℋ respectively associated with the Poisson semigroup and the heat semigroup on a complete Riemannian manifold M. Without any assumption on M, we observe that 𝒢 and ℋ are bounded in $L^{p}$, 1 < p ≤ 2. We also consider modified Littlewood-Paley-Stein functions that take into account the positivity of the bottom of the spectrum. Assuming that M satisfies the doubling volume property and an optimal on-diagonal heat kernel estimate, we prove that 𝒢 and ℋ (as well as the corresponding horizontal functions, i.e. involving time derivatives) are of weak type (1,1). Finally, we apply our methods to divergence form operators on arbitrary domains of ℝⁿ.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
37-57
Opis fizyczny
Daty
wydano
2003
Twórcy
autor
- Université de Cergy-Pontoise, 95302 Pontoise, France
autor
- Macquarie University, North Ryde, NSW 2113, Australia
autor
- University of Oxford, Oxford OX1 3LB, United Kingdom
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm154-1-4