Warianty tytułu
Języki publikacji
Abstrakty
The commutator of a singular integral operator with homogeneous kernel Ω(x)/|x|ⁿ is studied, where Ω is homogeneous of degree zero and has mean value zero on the unit sphere. It is proved that $Ω ∈ L(log L)^{k+1}(S^{n-1})$ is a sufficient condition for the kth order commutator to be bounded on $L^{p}(ℝⁿ)$ for all 1 < p < ∞. The corresponding maximal operator is also considered.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
13-27
Opis fizyczny
Daty
wydano
2003
Twórcy
autor
- Department of Applied Mathematics, University of Information Engineering, P.O. Box 1001-747, Zhengzhou 450002, People's Republic of China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm154-1-2