Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The harmonic Cesàro operator 𝓒 is defined for a function f in $L^{p}(ℝ)$ for some 1 ≤ p < ∞ by setting $𝓒(f)(x): = ∫^{∞}_{x} (f(u)/u)du$ for x > 0 and $𝓒(f)(x): = -∫_{-∞}^{x} (f(u)/u)du$ for x < 0; the harmonic Copson operator ℂ* is defined for a function f in $L¹_{loc}(ℝ)$ by setting $𝓒*(f)(x): = (1/x) ∫^{x₀} f(u)du$ for x ≠ 0. The notation indicates that ℂ and ℂ* are adjoint operators in a certain sense.
We present rigorous proofs of the following two commuting relations:
(i) If $f ∈ L^{p}(ℝ)$ for some 1 ≤ p ≤ 2, then $(𝓒(f))^{∧}(t) = 𝓒*(f̂)(t)$ a.e., where f̂ denotes the Fourier transform of f.
(ii) If $f ∈ L^{p}(ℝ)$ for some 1 < p ≤ 2, then $(𝓒*(f))^{∧}(t) = 𝓒(f̂)(t)$ a.e.
As a by-product of our proofs, we obtain representations of $(𝓒(f))^{∧}(t)$ and $(𝓒*(f))^{∧}(t)$ in terms of Lebesgue integrals in case f belongs to $L^{p}(ℝ)$ for some 1 < p ≤ 2. These representations are valid for almost every t and may be useful in other contexts.
We present rigorous proofs of the following two commuting relations:
(i) If $f ∈ L^{p}(ℝ)$ for some 1 ≤ p ≤ 2, then $(𝓒(f))^{∧}(t) = 𝓒*(f̂)(t)$ a.e., where f̂ denotes the Fourier transform of f.
(ii) If $f ∈ L^{p}(ℝ)$ for some 1 < p ≤ 2, then $(𝓒*(f))^{∧}(t) = 𝓒(f̂)(t)$ a.e.
As a by-product of our proofs, we obtain representations of $(𝓒(f))^{∧}(t)$ and $(𝓒*(f))^{∧}(t)$ in terms of Lebesgue integrals in case f belongs to $L^{p}(ℝ)$ for some 1 < p ≤ 2. These representations are valid for almost every t and may be useful in other contexts.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
267-279
Opis fizyczny
Daty
wydano
2002
Twórcy
autor
- Bolyai Institute, University of Szeged, Aradi Vértanúk Tere 1, 6720 Szeged, Hungary
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-3-4