Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Beurling's classical theorem gives a complete characterization of all invariant subspaces in the Hardy space H²(D). To generalize the theorem to higher dimensions, one is naturally led to determining the structure of each unitary equivalence (resp. similarity) class. This, in turn, requires finding podal (resp. s-podal) points in unitary (resp. similarity) orbits. In this note, we find that H-outer (resp. G-outer) functions play an important role in finding podal (resp. s-podal) points. By the methods developed in this note, we can assess when a unitary (resp. similarity) orbit contains a podal (resp. an s-podal) point, and hence provide examples of orbits without such points.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
109-120
Opis fizyczny
Daty
wydano
2002
Twórcy
autor
- Department of Mathematics, Fudan University, Shanghai, 200433, People's Republic of China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-2-2