Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We present, discuss and apply two reiteration theorems for triples of quasi-Banach function lattices. Some interpolation results for block-Lorentz spaces and triples of weighted $L_{p}$-spaces are proved. By using these results and a wavelet theory approach we calculate (θ,q)-spaces for triples of smooth function spaces (such as Besov spaces, Sobolev spaces, etc.). In contrast to the case of couples, for which even the scale of Besov spaces is not stable under interpolation, for triples we obtain stability in the frame of Besov spaces based on Lorentz spaces. Moreover, by using the results and ideas of this paper, we can extend the Stein-Weiss interpolation theorem known for $L_{p}(μ)$-spaces with change of measures to Lorentz spaces with change of measures. In particular, the results obtained show that for some problems in analysis the three-space real interpolation approach is really more useful than the usual real interpolation between couples.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
219-254
Opis fizyczny
Daty
wydano
2001
Twórcy
autor
- Department of Mathematics, Yaroslavl' State Pedagogical University, Respublikanskaya 108, 150 000 Yaroslavl', Russia
autor
- Department of Mathematics, Yaroslavl' State University, Sovetskaya 14, 150 000 Yaroslavl', Russia
autor
- Department of Mathematics, Luleå University of Technology, S-971 87 Luleå, Sweden
autor
- Department of Mathematics, Sofia University, blv. J. Bouchier 5, 1164 Sofia, Bulgaria
autor
- Department of Mathematics, Luleå University of Technology, S-971 87 Luleå, Sweden
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm145-3-4