Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We present a new continuous selection theorem, which unifies in some sense two well known selection theorems; namely we prove that if F is an H-upper semicontinuous multivalued map on a separable metric space X, G is a lower semicontinuous multivalued map on X, both F and G take nonconvex $L_{p}(T,E)$-decomposable closed values, the measure space T with a σ-finite measure μ is nonatomic, 1 ≤ p < ∞, $L_{p}(T,E)$ is the Bochner-Lebesgue space of functions defined on T with values in a Banach space E, F(x) ∩ G(x) ≠ ∅ for all x ∈ X, then there exists a CM-selector for the pair (F,G), i.e. a continuous selector for G (as in the theorem of H. Antosiewicz and A. Cellina (1975), A. Bressan (1980), S. Łojasiewicz, Jr. (1982), generalized by A. Fryszkowski (1983), A. Bressan and G. Colombo (1988)) which is simultaneously an ε-approximate continuous selector for F (as in the theorem of A. Cellina, G. Colombo and A. Fonda (1986), A. Bressan and G. Colombo (1988)).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
135-152
Opis fizyczny
Daty
wydano
2001
Twórcy
autor
- Institute of Mathematics, Szczecin University, Wielkopolska 15, 70-451 Szczecin, Poland
autor
- Institute of Mathematics, Szczecin University, Wielkopolska 15, 70-451 Szczecin, Poland
autor
- Institute of Mathematics, Szczecin University, Wielkopolska 15, 70-451 Szczecin, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm144-2-3