Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We consider amalgamation properties of convergent sequences in topological groups and topological vector spaces. The main result of this paper is that, for arbitrary topological groups, Nyikos's property $α_{1.5}$ is equivalent to Arhangel'skiĭ's formally stronger property α₁. This result solves a problem of Shakhmatov (2002), and its proof uses a new perturbation argument. We also prove that there is a topological space X such that the space $C_{p}(X)$ of continuous real-valued functions on X with the topology of pointwise convergence has Arhangel'skiĭ's property α₁ but is not countably tight. This follows from results of Arhangel'skiĭ-Pytkeev, Moore and Todorčević, and provides a new solution, with stronger properties than the earlier solution, of a problem of Averbukh and Smolyanov (1968) concerning topological vector spaces.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
281-293
Opis fizyczny
Daty
wydano
2016
Twórcy
autor
- Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel
- Department of Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
autor
- Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Str. 25, 1090 Wien, Austria
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm994-1-2016