Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Foreman (2013) proved a Duality Theorem which gives an algebraic characterization of certain ideal quotients in generic extensions. As an application he proved that generic supercompactness of ω₁ is preserved by any proper forcing. We generalize portions of Foreman's Duality Theorem to the context of generic extender embeddings and ideal extenders (as introduced by Claverie (2010)). As an application we prove that if ω₁ is generically strong, then it remains so after adding any number of Cohen subsets of ω₁; however many other ω₁-closed posets-such as Col(ω₁,ω₂)-can destroy the generic strongness of ω₁. This generalizes some results of Gitik-Shelah (1989) about indestructibility of strong cardinals to the generically strong context. We also prove similar theorems for successor cardinals larger than ω₁.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
131-149
Opis fizyczny
Daty
wydano
2016
Twórcy
autor
- Virginia Commonwealth University, Department of Mathematics and Applied Mathematics, 1015 Floyd Avenue, P.O. Box 842014, Richmond, VA 23284, U.S.A.
autor
- Virginia Commonwealth University, Department of Mathematics and Applied Mathematics, 1015 Floyd Avenue, P.O. Box 842014, Richmond, VA 23284, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-2-3