Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We improve some results of Pavlov and Filatova, concerning a problem of Malykhin, by showing that every regular space X that satisfies Δ(X) > e(X) is ω-resolvable. Here Δ(X), the dispersion character of X, is the smallest size of a non-empty open set in X, and e(X), the extent of X, is the supremum of the sizes of all closed-and-discrete subsets of X. In particular, regular Lindelöf spaces of uncountable dispersion character are ω-resolvable.
We also prove that any regular Lindelöf space X with |X| = Δ(X) = ω₁ is even ω₁-resolvable. The question whether regular Lindelöf spaces of uncountable dispersion character are maximally resolvable remains wide open.
We also prove that any regular Lindelöf space X with |X| = Δ(X) = ω₁ is even ω₁-resolvable. The question whether regular Lindelöf spaces of uncountable dispersion character are maximally resolvable remains wide open.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
27-46
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, 13-15 Reáltanoda u., 1053 Budapest, Hungary
autor
- Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, 13-15 Reáltanoda u., 1053 Budapest, Hungary
autor
- Institute of Mathematics, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm228-1-3