Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We continue the study of remainders of metrizable spaces, expanding and applying results obtained in [Fund. Math. 215 (2011)]. Some new facts are established. In particular, the closure of any countable subset in the remainder of a metrizable space is a Lindelöf p-space. Hence, if a remainder of a metrizable space is separable, then this remainder is a Lindelöf p-space. If the density of a remainder Y of a metrizable space does not exceed $2^{ω}$, then Y is a Lindelöf Σ-space. We also show that many of the theorems on remainders of metrizable spaces can be extended to paracompact p-spaces or to spaces with a σ-disjoint base. We also extend to remainders of metrizable spaces the well known theorem on metrizability of compacta with a point-countable base.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
71-81
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
- h. 33, apt. 137 Kutuzovskii Prospekt, Moscow 121165, Russian Federation
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-1-4