Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let f: ℙ → ℙ be a holomorphic endomorphism of a complex projective space $ℙ^{k}$, k ≥ 1, and let J be the Julia set of f (the topological support of the unique maximal entropy measure). Then there exists a positive number $κ_{f} > 0$ such that if ϕ: J → ℝ is a Hölder continuous function with $sup(ϕ) - inf(ϕ) < κ_{f}$, then ϕ admits a unique equilibrium state $μ_{ϕ}$ on J. This equilibrium state is equivalent to a fixed point of the normalized dual Perron-Frobenius operator. In addition, the dynamical system $(f,μ_{ϕ})$ is K-mixing, whence ergodic. Proving almost periodicity of the corresponding Perron-Frobenius operator is the main technical task of the paper. It requires producing sufficiently many "good" inverse branches and controling the distortion of the Birkhoff sums of the potential ϕ. In the case when the Julia set J does not intersect any periodic irreducible algebraic variety contained in the critical set of f, we have $κ_{f} = log d$, where d is the algebraic degree of f.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
23-69
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
- Department of Mathematics, University of North Texas, Denton, TX 76203-1430, U.S.A.
autor
- Institute of Mathematics, University of Warsaw, 02-097 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-1-3