Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let J ⊂ ℝ² be the set of couples (x,q) with q > 1 such that x has at least one representation of the form $x = ∑_{i=1}^{∞} c_{i} q^{-i}$ with integer coefficients $c_{i}$ satisfying $0 ≤ c_{i} < q$, i ≥ 1. In this case we say that $(c_{i}) = c₁c₂...$ is an expansion of x in base q. Let U be the set of couples (x,q) ∈ J such that x has exactly one expansion in base q. In this paper we deduce some topological and combinatorial properties of the set U. We characterize the closure of U, and we determine its Hausdorff dimension. For (x,q) ∈ J, we also prove new properties of the lexicographically largest expansion of x in base q.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
175-189
Opis fizyczny
Daty
wydano
2011
Twórcy
autor
- Delft University of Technology, Mekelweg 4, 2628 CD Delft, the Netherlands
autor
- Département de Mathématique, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-2-4