Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
If G is a group then the abelian subgroup spectrum of G is defined to be the set of all κ such that there is a maximal abelian subgroup of G of size κ. The cardinal invariant A(G) is defined to be the least uncountable cardinal in the abelian subgroup spectrum of G. The value of A(G) is examined for various groups G which are quotients of certain permutation groups on the integers. An important special case, to which much of the paper is devoted, is the quotient of the full symmetric group by the normal subgroup of permutations with finite support. It is shown that, if we use G to denote this group, then A(G) ≤ 𝔞. Moreover, it is consistent that A(G) ≠ 𝔞. Related results are obtained for other quotients using Borel ideals.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
197-235
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Department of Mathematics, Rutgers University, Hill Center, Piscataway, NJ 08854-8019, U.S.A.
- Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel
autor
- Department of Mathematics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3
- Fields Institute, 222 College Street, Toronto, Canada M5T 3J1
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm196-3-1