Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Let Fⁿ be a connected, smooth and closed n-dimensional manifold satisfying the following property: if $N^{m}$ is any smooth and closed m-dimensional manifold with m > n and $T:N^{m} → N^{m}$ is a smooth involution whose fixed point set is Fⁿ, then m = 2n. We describe the equivariant cobordism classification of smooth actions $(M^{m};Φ)$ of the group $G = Z₂^{k}$ on closed smooth m-dimensional manifolds $M^{m}$ for which the fixed point set of the action is a submanifold Fⁿ with the above property. This generalizes a result of F. L. Capobianco, who obtained this classification for $Fⁿ = ℝP^{2r}$ (P. E. Conner and E. E. Floyd had previously shown that $ℝP^{2r}$ has the property in question). In addition, we establish some properties concerning these Fⁿ and give some new examples of these special manifolds.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
97-109
Opis fizyczny
Daty
wydano
2005
Twórcy
autor
- Centro de Ciências Exatas e Tecnologia, Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676; CEP 13.565-905, São Carlos, SP, Brazil
autor
- Departamento de Ciências Exatas, Campus Universitário de Três Lagoas, Universidade Federal de Mato Grosso do Sul, Caixa Postal 210; CEP 79603-011, Três Lagoas, MS, Brazil
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm186-2-1