Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
It is shown that for every at most k-to-one closed continuous map f from a non-empty n-dimensional metric space X, there exists a closed continuous map g from a zero-dimensional metric space onto X such that the composition f∘g is an at most (n+k)-to-one map. This implies that f is a composition of n+k-1 simple ( = at most two-to-one) closed continuous maps. Stronger conclusions are obtained for maps from Anderson-Choquet spaces and ones that satisfy W. Hurewicz's condition (α). The main tool is a certain extension of the Lebesgue-Čech dimension to finite-to-one closed continuous maps.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
95-106
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
- Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm182-2-1