Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 182 | 1 | 53-77
Tytuł artykułu

Extension theory of infinite symmetric products

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present an approach to cohomological dimension theory based on infinite symmetric products and on the general theory of dimension called the extension dimension. The notion of the extension dimension ext-dim(X) was introduced by A. N. Dranishnikov [9] in the context of compact spaces and CW complexes. This paper investigates extension types of infinite symmetric products SP(L). One of the main ideas of the paper is to treat ext-dim(X) ≤ SP(L) as the fundamental concept of cohomological dimension theory instead of $dim_G(X) ≤ n. In a subsequent paper [18] we show how properties of infinite symmetric products lead naturally to a calculus of graded groups which implies most of the classical results on the cohomological dimension. The basic notion in [18] is that of homological dimension of a graded group which allows for simultaneous treatment of cohomological dimension of compacta and extension properties of CW complexes.
We introduce cohomology of X with respect to L (defined as homotopy groups of the function space $SP(L)^X$). As an application of our results we characterize all countable groups G so that the Moore space M(G,n) is of the same extension type as the Eilenberg-MacLane space K(G,n). Another application is a characterization of infinite symmetric products of the same extension type as a compact (or finite-dimensional and countable) CW complex.
Słowa kluczowe
Rocznik
Tom
182
Numer
1
Strony
53-77
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
  • Mathematics Department, University of Tennessee, Knoxville, TN 37996-1300, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm182-1-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.