Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For any class 𝒦 of compacta and any compactum X we say that: (a) X is confluently 𝒦-representable if X is homeomorphic to the inverse limit of an inverse sequence of members of 𝒦 with confluent bonding mappings, and (b) X is confluently 𝒦-like provided that X admits, for every ε >0, a confluent ε-mapping onto a member of 𝒦. The symbol 𝕃ℂ stands for the class of all locally connected compacta. It is proved in this paper that for each compactum X and each family 𝒦 of graphs, X is confluently 𝒦-representable if and only if X is confluently 𝒦-like. We also show that for any compactum the properties of: (1) being confluently graph-representable, and (2) being 1-dimensional and confluently 𝕃ℂ-like, are equivalent. Consequently, all locally connected curves are confluently graph-representable. We also conclude that all confluently arc-like continua are homeomorphic to inverse limits of arcs with open bonding mappings, and all confluently tree-like continua are absolute retracts for hereditarily unicoherent continua.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
109-127
Opis fizyczny
Daty
wydano
2003
Twórcy
autor
- Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A.
autor
- Institute of Mathematics, University of Opole, Oleska 48, 45-052 Opole, Poland
- Department of Mathematics, Idaho State University, Pocatello, ID 83209, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-2