Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Let Ω be a bounded domain in $ℝ^{N}$ with smooth boundary. Consider the following elliptic system:
$-Δu = ∂_{v}H(u,v,x)$ in Ω,
$-Δv = ∂_{u}H(u,v,x)$ in Ω,
u = 0, v = 0 in ∂Ω. (ES)
We assume that H is an even "-"-type Hamiltonian function whose first order partial derivatives satisfy appropriate growth conditions. We show that if (0,0) is a hyperbolic solution of (ES), then (ES) has at least 2|μ| nontrivial solutions, where μ = μ(0,0) is the renormalized Morse index of (0,0). This proves a conjecture by Angenent and van der Vorst.
$-Δu = ∂_{v}H(u,v,x)$ in Ω,
$-Δv = ∂_{u}H(u,v,x)$ in Ω,
u = 0, v = 0 in ∂Ω. (ES)
We assume that H is an even "-"-type Hamiltonian function whose first order partial derivatives satisfy appropriate growth conditions. We show that if (0,0) is a hyperbolic solution of (ES), then (ES) has at least 2|μ| nontrivial solutions, where μ = μ(0,0) is the renormalized Morse index of (0,0). This proves a conjecture by Angenent and van der Vorst.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
233-249
Opis fizyczny
Daty
wydano
2003
Twórcy
autor
- Department of Technical Physics and Applied Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-952 Gdańsk, Poland
autor
- Fachbereich Mathematik, Universität Rostock, Universitätsplatz 1, 18055 Rostock, Germany
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-3-3