Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
By results of [9] there are models 𝔄 and 𝔅 for which the Ehrenfeucht-Fraïssé game of length ω₁, $EFG_{ω₁}(𝔄,𝔅)$, is non-determined, but it is consistent relative to the consistency of a measurable cardinal that no such models have cardinality ≤ ℵ₂. We now improve the work of [9] in two ways. Firstly, we prove that the consistency strength of the statement "CH and $EFG_{ω₁}(𝔄,𝔅)$ is determined for all models 𝔄 and 𝔅 of cardinality ℵ₂" is that of a weakly compact cardinal. On the other hand, we show that if $2^{ℵ₀} < 2^{ℵ₃}$, T is a countable complete first order theory, and one of
(i) T is unstable,
(ii) T is superstable with DOP or OTOP,
(iii) T is stable and unsuperstable and $2^{ℵ₀} ≤ ℵ₃$,
holds, then there are 𝓐,ℬ ⊨ T of power ℵ₃ such that $EFG_{ω₁}(𝓐,ℬ)$ is non-determined.
(i) T is unstable,
(ii) T is superstable with DOP or OTOP,
(iii) T is stable and unsuperstable and $2^{ℵ₀} ≤ ℵ₃$,
holds, then there are 𝓐,ℬ ⊨ T of power ℵ₃ such that $EFG_{ω₁}(𝓐,ℬ)$ is non-determined.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
79-96
Opis fizyczny
Daty
wydano
2002
Twórcy
autor
- Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), 00014 University of Helsinki, Finland
autor
- Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Deparment of Mathematics, Rutgers University, New Brunswick, NJ 08903, U.S.A.
autor
- Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), 00014 University of Helsinki, Finland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-1-5