Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let f: X → Y be a closed n-dimensional surjective map of metrizable spaces. It is shown that if Y is a C-space, then: (1) the set of all maps g: X → 𝕀ⁿ with dim(f △ g) = 0 is uniformly dense in C(X,𝕀ⁿ); (2) for every 0 ≤ k ≤ n-1 there exists an $F_{σ}$-subset $A_{k}$ of X such that $dim A_{k} ≤ k$ and the restriction $f|(X∖A_{k})$ is (n-k-1)-dimensional. These are extensions of theorems by Pasynkov and Toruńczyk, respectively, obtained for finite-dimensional spaces. A generalization of a result due to Dranishnikov and Uspenskij about extensional dimension is also established.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
35-52
Opis fizyczny
Daty
wydano
2002
Twórcy
autor
- Department of Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada
autor
- Department of Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-1-2