Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We study the generalized Cantor space $^{κ}2$ and the generalized Baire space $^{κ}κ$ as analogues of the classical Cantor and Baire spaces. We equip $^{κ}κ$ with the topology where a basic neighborhood of a point η is the set {ν: (∀j < i)(ν(j) = η(j))}, where i < κ.
We define the concept of a strong measure zero set of $^{κ}2$. We prove for successor $κ = κ^{<κ}$ that the ideal of strong measure zero sets of $^{κ}2$ is $𝔟_{κ}$-additive, where ${𝔟}_{κ}$ is the size of the smallest unbounded family in $^{κ}κ$, and that the generalized Borel conjecture for $^{κ}2$ is false. Moreover, for regular uncountable κ, the family of subsets of $^{κ}2$ with the property of Baire is not closed under the Suslin operation.
These results answer problems posed in [2].
We define the concept of a strong measure zero set of $^{κ}2$. We prove for successor $κ = κ^{<κ}$ that the ideal of strong measure zero sets of $^{κ}2$ is $𝔟_{κ}$-additive, where ${𝔟}_{κ}$ is the size of the smallest unbounded family in $^{κ}κ$, and that the generalized Borel conjecture for $^{κ}2$ is false. Moreover, for regular uncountable κ, the family of subsets of $^{κ}2$ with the property of Baire is not closed under the Suslin operation.
These results answer problems posed in [2].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
219-229
Opis fizyczny
Daty
wydano
2001
Twórcy
autor
- Department of Mathematics, P.O. Box 4, FIN-00014 University of Helsinki, Helsinki, Finland
autor
- Institute of Mathematics, Hebrew University, Jerusalem, Israel
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-3-1