Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Schmidt's Tauberian theorem says that if a sequence (x_k) of real numbers is slowly decreasing and $lim_{n→ ∞} (1/n) ∑^{n}_{k=1} x_k = L$, then $lim_{k→ ∞} x_k = L$. The notion of slow decrease includes Hardy's two-sided as well as Landau's one-sided Tauberian conditions as special cases. We show that ordinary summability (C,1) can be replaced by the weaker assumption of statistical summability (C,1) in Schmidt's theorem. Two recent theorems of Fridy and Khan are also corollaries of our Theorems 1 and 2. In the Appendix, we present a new proof of Vijayaraghavan's lemma under less restrictive conditions, which may be useful in other contexts.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
207-219
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
- Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6720 Szeged, Hungary
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-6