Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For any module M over an associative ring R, let σ[M] denote the smallest Grothendieck subcategory of Mod-R containing M. If σ[M] is locally finitely presented the notions of purity and pure injectivity are defined in σ[M]. In this paper the relationship between these notions and the corresponding notions defined in Mod-R is investigated, and the connection between the resulting Ziegler spectra is discussed. An example is given of an M such that σ[M] does not contain any non-zero finitely presented objects.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
189-202
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
- Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
autor
- Mathematisches Institut der, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-2-4