Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We consider zero entropy $C^{∞}$-diffeomorphisms on compact connected $C^{∞}$-manifolds. We introduce the notion of polynomial growth of the derivative for such diffeomorphisms, and study it for diffeomorphisms which additionally preserve a smooth measure. We show that if a manifold M admits an ergodic diffeomorphism with polynomial growth of the derivative then there exists a smooth flow with no fixed point on M. Moreover, if dim M = 2, then necessarily M = 𝕋² and the diffeomorphism is $C^{∞}$-conjugate to a skew product on the 2-torus.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
75-90
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm99-1-8