Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 95 | 1 | 79-90
Tytuł artykułu

Structure of geodesics in the Cayley graph of infinite Coxeter groups

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let (W,S) be a Coxeter system such that no two generators in S commute. Assume that the Cayley graph of (W,S) does not contain adjacent hexagons. Then for any two vertices x and y in the Cayley graph of W and any number k ≤ d = dist(x,y) there are at most two vertices z such that dist(x,z) = k and dist(z,y) = d - k. Allowing adjacent hexagons, but assuming that no three hexagons can be adjacent to each other, we show that the number of such intermediate vertices at a given distance from x and y is at most 3. This means that the group W is hyperbolic in a sense stronger than that of Gromov.
Słowa kluczowe
Rocznik
Tom
95
Numer
1
Strony
79-90
Opis fizyczny
Daty
wydano
2003
Twórcy
  • Institute of Mathematics, Wrocław University, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm95-1-7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.