Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For a non-unit a of an atomic monoid H we call
$L_H(a) = {k ∈ ℕ | a = u₁... u_k with irreducible u_i ∈ H}$
the set of lengths of a. Let H be a Krull monoid with infinite divisor class group such that each divisor class is the sum of a bounded number of prime divisor classes of H. We investigate factorization properties of H and show that H has sets of lengths containing large gaps. Finally we apply this result to finitely generated algebras over perfect fields with infinite divisor class group.
$L_H(a) = {k ∈ ℕ | a = u₁... u_k with irreducible u_i ∈ H}$
the set of lengths of a. Let H be a Krull monoid with infinite divisor class group such that each divisor class is the sum of a bounded number of prime divisor classes of H. We investigate factorization properties of H and show that H has sets of lengths containing large gaps. Finally we apply this result to finitely generated algebras over perfect fields with infinite divisor class group.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
229-242
Opis fizyczny
Daty
wydano
2002
Twórcy
autor
- Institut für Mathematik, Karl-Franzens-Universität Graz, Heinrichstraße 36/4, A-8010 Graz, Austria
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm92-2-7