Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let P be an orthomodular poset and let B be a Boolean subalgebra of P. A mapping s:P → ⟨0,1⟩ is said to be a centrally additive B-state if it is order preserving, satisfies s(a') = 1 - s(a), is additive on couples that contain a central element, and restricts to a state on B. It is shown that, for any Boolean subalgebra B of P, P has an abundance of two-valued centrally additive B-states. This answers positively a question raised in [13, Open question, p. 13]. As a consequence one obtains a somewhat better set representation of orthomodular posets and a better extension theorem than in [2, 12, 13]. Further improvement in the Boolean vein is hardly possible as the concluding example shows.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
233-240
Opis fizyczny
Daty
wydano
2001
Twórcy
autor
- Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003, U.S.A.
autor
- Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University, Technická 2, 16627 Praha 6, Czech Republic
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm89-2-8