Warianty tytułu
Języki publikacji
Abstrakty
It is well known that for the ring H(ℤ) of integral quaternions the unit group U(H(ℤ) is finite. On the other hand, for the rational quaternion algebra H(ℚ), its unit group is infinite and even contains a nontrivial free subgroup. In this note (see Theorem 1.5 and Corollary 2.6) we find all intermediate rings ℤ ⊂ A ⊆ ℚ such that the group of units U(H(A)) of quaternions over A contains a nontrivial free subgroup. In each case we indicate such a subgroup explicitly. We do our best to keep the arguments as simple as possible.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
21-27
Opis fizyczny
Daty
wydano
2001
Twórcy
autor
- Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm88-1-3