Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For every metric space X we introduce two cardinal characteristics $cov^{♭}(X)$ and $cov^{♯}(X)$ describing the capacity of balls in X. We prove that these cardinal characteristics are invariant under coarse equivalence, and that two ultrametric spaces X,Y are coarsely equivalent if $cov^{♭}(X) = cov^{♯}(X) = cov^{♭}(Y) = cov^{♯}(Y)$. This implies that an ultrametric space X is coarsely equivalent to an isometrically homogeneous ultrametric space if and only if $cov^{♭}(X) = cov^{♯}(X)$. Moreover, two isometrically homogeneous ultrametric spaces X,Y are coarsely equivalent if and only if $cov^{♯}(X) = cov^{♯}(Y)$ if and only if each of them coarsely embeds into the other. This means that the coarse structure of an isometrically homogeneous ultrametric space X is completely determined by the value of the cardinal $cov^{♯}(X) = cov^{♭}(X)$.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
189-202
Opis fizyczny
Daty
wydano
2016
Twórcy
autor
- Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine
- Jan Kochanowski University in Kielce, Świętokrzyska 15, 25-406 Kielce, Poland
autor
- Faculty of Education
- Faculty of Mathematics and Physics, University of Ljubljana, Kardeljeva pl. 16, 1000 Ljubljana, Slovenia
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm6697-9-2015